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ABSTRACT [2] suggests that multiscale methods are a useful tool
for purposes of computational efficiency.

In this paper we explore a multiresolution approach We consider inverse problems described by that class
to solving one dimensional inverse problems. The ap- of operators which are made sparse under the action
proach we take is motivated by the work of Chou, of the wavelet transform [2]. Thus, the inversion pro-
Golden, and Willsky [1] and Beylkin, Coifman, and cedure is carried out in the wavelet transform domain.
Rokhlin [2]. Specifically, we consider inverse prob- As with many inverse problems, difficulties associated
lems described by that class of operators which are with ill-posedness and ill-conditioning are overcome
made sparse under the action of the wavelet trans- via regularization. Because the inversion is performed
form [2]. Moreover, statistically-based inversion pro- in scale-space, we employ a statistically-based regular-
cedures utilizing multiscale a priori stochastic models ization technique utilizing multiscale a priori models
are considered [1]. As a concrete example, we examine similar to those explored by Chou and Willsky in [1].
a deconvolution problem arising in wellbore induction The vehicle for our work is an inverse problem atis-
measurement of conductivity. ing in the area of geological exploration. Specifically,

we are interested in determining the conductivity pro-
file about a wellbore based upon a suite of induction
measurements each of which contains conductivity in-

1 INTRODUCTION formation at different spatial resolutions. This prob-
lem is of particular interest because it fulfills all three

In this work we consider the utility of applying mul- criteria for the application of multiresolution tech-
tiresolution methods to the solution of linear inverse niques to inverse problems. That is, conductivity vari-
problems. We take this approach above all others ations are typically fractal in nature, the data conveys
specifically because many of the issues arising in the information on a variety of scales, and the linear oper-
solution of linear inverse problems are ezactly those ators describing the measurements process are nearly
which are handled well by multiresolution methods. diagonalized by the wavelet transform.
First, there exist inverse problems for which the phe-
nomena under consideration may be fractal in nature
or characterized in an interesting way by their behav- 2 INDUCTION LOGGING
ior on a multitude of temporal or spatial scales. Alter-
natively , the data upon which the inversion is based Induction logging is a common technique used in ge-
may exhibit multiscale characteristics as is the case ological exploration for determining the conductivity
in many sensor fusion problems [1]. Finally, even if profile of a rock formation surrounding a wellbore. As
neither the phenomena nor the data is inherently mul- shown in Figure 1, an induction log is recorded as a
tiscale, recent work by Beylkin, Coifman, and Rokhlin transmitter and receiver coil pair are pulled through

the formation. A current in the transmitter induces
'This work was supported in part by the Office of Naval Re- sympathetic currents in the rock. In turn, these for-

search under Grant N00014-91-J-1004, the US Army Research mation currents create a secondary magnetic field re-
Office under Contract DAAL03-92-G-0115, and the Air Force
Office of Scientific Research under Grant AFOSR-92-J-0002. suiting in measurable current at the receiver [3]. The

tThe work of this author was also supported in part by a problem is to determine the conductivity of the for-
fellowship from Schlumberger-Doll Research. mation given the current signal at the receiver. More
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sophisticated induction logging techniques involve the
use of multiple transmitter and receiver pairs all mea-
suring the same rock structure with different pairs sen- - '
sitive to different areas about the borehole. As the RWevbr
length of each log becomes long and the number of Roc
antenna pairs grows, there exists a problem in terms 
of performing the inversion in reasonable time and at
reasonable cost while still making good use of the vast
quantity of available data.

In general, the conductivity in the formation is re-
lated in a nonlinear way to the currents observed in the
formation. Commonly, the problem is approached by
linearizing this relationship about some a priori back-
ground conductivity profile [4]. Moreover, it is often
assumed that the formation is azimuthally symmet-
ric about the borehole. In this paper, we reduce the p y
problem to the one dimensional case by making the
further assumption that the conductivity only varies /Pyol"d%
vertically. In this case, it can be shown [4] that the
observations at the it

h receiver, gi(z) are related to
the conductivity field, f(z), through the convolution
equation

gi (z) = JT(z - z') f (z)dz' =f ( 1) Figure 1: Geometry of Induction Logging

Where Ti(z) is a linearized kernel derived from
Maxwell's equations and dependent upon the back-
ground conductivity profile. Two examples of the
Ti(z) from Schlumberger's Array Induction ToolTM
are given in Figures 2 demonstrating how information
at different resolutions may be available to the inver-
sion routine.

3 MULTIRESOLUTION PROBLEM
STATEMENT

In [2], Beylkin, Coifman and Rokhlin proved that
a large class of operators are made sparse under the 0o 
action of the wavelet transform and derived a fast algo- 0.7
rithm for evaluating integrals containing these kernels. 0.6

The kernels we consider in conjunction with the induc- 05
tion logging problem are also of the class discussed in o

[21. Thus, we are able to exploit the sparse and nearly
diagonal structure of these operators in the wavelet 01

domain to construct their inverses using computation- T

ally efficient algorithms. ___ _

In this work, we adopt the following notation. In one
dimension, the scaling function coefficient for a func-
tion f(z) corresponding to the basis function at scale
m and shift k, p,,;k(t), is given by f(m; k) while the
wavelet coefficient associated with the wavelet 'm,,;k(t)
is 0(m; k). If the wavelet transform of a function is
to be considered only over a finite number of scales
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them the coarsest scale is denoted L and the finest by
M. Additionally, in many cases, it is useful to con-
sider the collection of scaling or wavelet coefficients
at a particular scale as a single entity. Hence we
adopt the notation +(m) _ {1(m; k)lk E Z} and
f(m) - {f(m;k)lk E Z}. When considering the
wavelet transform of a function over a finite number
of scales: L < m < M, we use the following construct:

W(f) =- , = [¢,T(M- 1) .. .. ,T(L) f T (L)]T (2)

where W(f) denotes the operation of taking the
wavelet transform of the function f. In two dimensions 60

we consider only tensor product wavelets (2]. Here,
the fundamental grouping of wavelet coefficients for
the transform of T(z, z') is the standard form repre- 100

sentation, WTiW* = , as discussed in (2].
Using our notation, Equation 1 may be rewritten as l. '

20 40 60 60 100 !~

r = W(g) = [wTw'W][W(f)] = iWO. (3)

The object of the inversion is to construct and apply
0 1 so that we may obtain q given the wavelet trans-

, \ ,,E, , \ . . Figure 3: Grayscale Image of Et1 I Using Haar Wavelet
form of the function g(z). Then, f(z) is recovered via
the inverse wavelet transform.

An example of the structure of O for the conductiv- where v = W(n). Second, we construct a prior model
ity deconvolution problem is given in Figure 3 for the for the function f(z). Because we are interested in
convolution kernel corresponding to Tl(z) and using performing the inversion in the wavelet transform do-
the Haar wavelet for the transform. Following [5], we main, a natural choice for a prior is a multiscale model
expect the inverse of O1 to be sparse and constructible of the form considered [1]. Here we take the model as
in a computationally efficient manner. Unlike, [5] how-
ever, we propose a stochastic inversion scheme based f(m + ) = H(m)f(m) + Gm )�(m (6
upon a multiscale a priori probabilistic model for the +(m) - Af(O, R(m)) (7)
wavelet transform of f(z). E[(O(m)<(n)'] = R(m)6(n- m) (8)

4 A STOCHASTIC REGULARIZATION where f(m) are the scaling function coefficients of
APPROACH f(z) at scale m, 0(m) are the corresponding wavelet

coefficients, H(m) and G(m) are the wavelet trans-
Two common difficulties associated with inversion form analysis operators, and the notation * indicates

problems of the form considered in Equation 1 are ill- adjoint. Finally, Equations 7 and 8 indicates that
posedness and ill-conditioning of the discretize system. the waveet oeffcient sequence is a zero mean white,
The solution to these issues usually comes in the form Gaussian process with covariance at scale m given
of a regularization procedure designed to constrain the by R(m). This particular a pioi model defines a
original problem so as to make it well-posed and to re- stochastic process recursively in the scale parameter
move the numerical difficulties associated with poorly m on a lattice of points [1]. More general latticetype
conditioned linear systems. In this work, we choose a processes can be constructed li. which may be of use
probabilistically based regularization approach. in future work on multiscale inversion techniques.

4.1 The Regularization 4.2 Inversion Algorithms
The regularization is accomplished in two steps. Given this multiscale, stochastic regularization we

First, we assume that the measurements are corrupted may immediately construct the Maximum a posteriori
by an additive, white Gaussian noise process, n(z), so estimator for the wavelet coefficients of f(z) as [6]
that the input to the inversion algorithm, y(z), is given
by kMAP = AkOT[GAO OT + A± ] -lr (9)

yi(z) = gi(z) + ni(z) (4) with A. = cov(z) and where we have tacitly assumed

= W(yi) = 77i = O(b + v. (5) i = 1. The form of the gain matrix multiplying i7 for
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built around the multiscale model itself rather than an
SOR-type approach.

5 CONCLUSION and FUTURE WORK

This paper has presented the framework for a mul-
tiscale approach to the solution of one dimensional in-

20 : verse problems. We have discussed the utility of this
approach, demonstrated its potential through the use
of a relevant example, and developed the basics of a
multiscale stochastic regularization method for solv-

'" '"' .... ; ing the problem. In the presentation accompanying
this paper, we discuss scale-recursive, computationally
efficient reconstruction algorithms derived from state-
space-like models constructed to approximate the orig-

.10 '^............. ; inal operator.
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resent the final solution to the inverse problem. Al-
ternatively, we may utilize the approximate models as
pre-conditioners for other solution techniques such as
successive over relaxation. Finally, it may be possi-
ble to improve the estimates generated under out ap-
proximate models using an iterative correction scheme
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